STUDIEGROEP DIER & KRUID – 4 JUNI 2019

ZEEVVIER VOOR BIGGEN EN VLEESKUIKENS;

EEN NATUURLIJK INGREDIËNT IN ANTIBIOTICA VRIJE VOEDERS.

CATHARINA NIEUWENHUIZEN, BARENTZ ANIMAL NUTRITION



DIER & KRUID – 4 JUNI 2019

SEAVVEED FOR PIGS AND POULTRY;

A NATURAL INGREDIENT IN ANTIBIOTIC FREE DIETS.

CATHARINA NIEUWENHUIZEN, BARENTZ ANIMAL NUTRITION



# SHORT INTRODUCTION - COMPANY PROFILE BARENTZ ANIMAL NUTRITION



# OUR LIFE SCIENCES SALES DIVISIONS

# **BARENTZ**

**FOOD & NUTRITION** 



400 Mln € + 10% growth yearly 160 Experts > 8000 customers

# **BARENTZ**

ANIMAL NUTRITION



150 Mln € + 12% growth yearly 40 Experts > 800 customers

# **BARENTZ**

**PHARMACEUTICALS** 



215 Mln € + 15% growth yearly 65 Experts > 3500 customers

# **BARENTZ**

PERSONAL CARE



45 Mln € +15% growth yearly 40 Experts > 2500 customers

Our Joint Ventures contribute an additional 290 Mln € to the Group's results



# BARENTZ ANIMAL NUTRITION

#### OUR USP'S

- 1. We are part of a leading global distributor and are able to leverage our combined knowledge and supply chain networks to increase cost efficiency and sales effectivity
- 2. We serve both animal feed customers and pet food producers and are recognized for our outstanding customer intimacy serving them with a combined product offering complemented with technical assistance
- 3. We combine commodities and single ingredients as well as technical products and customized solutions in our portfolio, which aligns very well with our one-stop-shop approach
- 4. We are very well positioned in Europe's biggest animal nutrition and pet food markets and are strategically investing in unlocking new growth areas





# PRODUCT PORTFOLIO FOCUS FUNCTIONAL & NUTRITIONAL

Proteins

Strong partnerships for soy based

Other plant based, but also novel

Carbohydrates

• Long history with Roquette Freres

• Other starches & derivatives

Amino Acids

Long history and strong relationships

Not only trade, also distributor

Vitamins

Very strong position in Chinese origin

• Strategic for combined portfolio

Specialties

• Include yeasts, anti-oxidants, Sea Weed

Supported by own technical team





### BARENTZ ANIMAL NUTRITION

# BARENTZ DISTRIBUTOR FOR OCEAN HARVEST TECHNOLOGY



### OCEAN HARVEST TECHNOLOGY

"We develop and scale unique feed ingredients from proprietary natural seaweed blends that provide the foundation of gut health and performance in our customer's animals."



- •OHT was founded in 2005 in Ireland, where we still maintain blending, R&D, and order handling.
- Vietnam is main manufacturing hub linked closely with ops in the Philippines and Indonesia
- •Commercial and technical management in UK.



## OCEAN HARVEST TECHNOLOGY

- Seaweeds blends allow us to target specific performance and bioactivity while avoiding issues such as high levels of arsenic and iodine
- Whole seaweeds deliver tangible benefits with reduced processing and cost.
- Unique supply chain of critical seaweeds across the EU and South East Asia, at a scale that is relevant.
- Proprietary manufacturing allow us to create *unique product forms* including crumbles, pellets, and finely milled powders.
- •Our team comprises *experts in both seaweed* and animal nutrition, giving us the ability to unlock value for our customers



Seaweed harvesting site Vietnam



# TECHNICAL BACKGROUND

# SEAVVEED & SEAVVEED BLENDS



### SEAVVEED

#### WHAT IS SEAWEED?

- Macro algae with bioactive components
- Unique Polysaccharides
  - Alginates, fucoidan, laminarin, ulvan, agar, carrageenan
- Specific protein, peptides and amino acids
- Antioxidants
- Long chain fatty acids / omega-3
- Rich in minerals, Vit E and C





# SPECIES SEAVVEED

#### CLASSIFIED INTO THREE GENERAL GROUPS

- Brown Seaweeds (~1800 species)
  - Generally the largest seaweeds, mostly marine
  - Includes kelps which can be several metres long
  - Examples: Sargassum, Ascophyllum, Fucus, Laminaria
- Red Seaweeds (~7000 species)
  - Mostly marine
  - Deeper in the ocean than brown seaweeds
  - Example: Gracilaria, Palmaria, Chrondrus
- Green seaweeds (>1500 species)
  - Marine or Fresh waters
  - Examples: Ulva, Codium





# TYPICAL COMPOSITION & VARIATION OF SEAVVEEDS

| Component     | Contents   |
|---------------|------------|
| Moisture      | 8 - 15 %   |
| Ash           | 20 - 45 %  |
| Carbohydrates | 35 - 45 %  |
| Lipids        | 0.25 - 5 % |
| Proteins      | 4 - 40 %   |
| Fibre         | 3 - 7 %    |

| Component          | Contents               |
|--------------------|------------------------|
| Vitamin A          | 0.7 - 0.8 ppm          |
| Vitamin C          | 500 - 1650 ppm         |
| <b>B</b> -Carotene | 35 - 80 ppm            |
| Vitamin B1         | 1 - 5 ppm              |
| Vitamin B2         | 5 - 10 ppm             |
| Vitamin B3         | 10 - 30 ppm            |
| Vitamin B6         | 0.1 - 0.5 ppm          |
| Vitamin B12        | 0.8 - 3 ppb            |
| Vitamin E          | 260 - 450 ppm          |
| Vitamin H          | 0.1 - 0.4 ppm          |
| Vitamin K3         | 10 ppm                 |
| Calcium            | 1 - 3 %                |
| lodine             | 50 - 4500 ppm          |
| Iron               | 101 - 1 <i>7</i> 6 ppm |
| Magnesium          | 0.5 - 0.9 %            |
| Manganese          | 10 - 15 ppm            |
| Sodium             | 3 - 4 %                |
| Zinc               | 70 - 240 ppm           |



### ANTIBIOTIC PROPERTIES OF MACROALGAE

|             | Aeromonas hydrophilia Aeromonas salmonicida | aquamarinus | s marina | zobacter belieringkii | Preis | hwajinpoensis | licheniformis | megaterium | Bacillus sp. | pacterium violaceum | := | ridium fallax | novvi | Clostridium sordelli | rina | dipththeria | erium alutamicum |  | erium helmiphilum | ds | quillarum | smeamatis | slagiobacter variabilis | damselae | roteus mirabilis | Sp | seudoalteromonas nalobianktis | seudomonas aeruginosa | seudomonas anquilliseptica | seudomonas sp | Q | ella sp. | ens | <u>.:</u> | 2 | Staphylococcus aureus O | epidermis | Sanapoyo | Vibrio alginolyticus | 0 |  | Vibrio parahaemolyticus | <br> | Vibrio vulnificus |
|-------------|---------------------------------------------|-------------|----------|-----------------------|-------|---------------|---------------|------------|--------------|---------------------|----|---------------|-------|----------------------|------|-------------|------------------|--|-------------------|----|-----------|-----------|-------------------------|----------|------------------|----|-------------------------------|-----------------------|----------------------------|---------------|---|----------|-----|-----------|---|-------------------------|-----------|----------|----------------------|---|--|-------------------------|------|-------------------|
| Chlorophyta |                                             |             |          |                       |       |               |               |            |              |                     |    |               |       |                      |      |             |                  |  |                   |    |           |           |                         |          |                  |    |                               |                       |                            |               |   |          |     |           |   |                         |           |          |                      |   |  |                         |      |                   |
| Phaeophyta  |                                             |             |          |                       |       |               |               |            |              |                     |    |               |       |                      |      |             |                  |  |                   |    |           |           |                         |          |                  |    |                               |                       |                            |               |   |          |     |           |   |                         |           |          |                      |   |  |                         |      |                   |
| Rhodophyta  |                                             |             |          |                       |       |               |               |            |              |                     |    |               |       |                      |      |             |                  |  |                   |    |           |           |                         |          |                  |    |                               |                       |                            |               |   |          |     |           |   |                         |           |          |                      |   |  |                         |      |                   |

- A wide body of academic work supports seaweed as a source of anti-bacterial activity.
- Observations and trials of seaweed confirm enhanced wellness in swine, as well as excellent feed performance.



### SEAWEED POLYSACCHARIDES - MODE OF ACTION



- Prebiotic polysaccharides exert positive effects on beneficial bacteria
- Inhibition of commonly occurring pathogenic bacteria
- Some polysaccharides stimulate the innate immune system
- The net effect is a better balance of the gut microbiome
- Reduced inflammation leading to improved gut morphology and nutrient adsorption



# SEAWEED AS PREBIOTICS - EFFECT ON PIG PERFORMANCE

| rease |
|-------|
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |



# SEAWEED AS PREBIOTICS - EFFECT ON GUT MICROFLORA

| Reference               | Test animals   | Polysaccharides Tested                        | Findings – Microbial                                                                      |
|-------------------------|----------------|-----------------------------------------------|-------------------------------------------------------------------------------------------|
| Gardiner et al. (2008)  | Finishing pigs | Crude A. nodosum extract                      | <ul><li>↓ Ileal Colliform</li><li>↓ Cecal bifidobacteria</li></ul>                        |
| Reilly et al. (2008)    | Weanling pigs  | L. digitata containing laminarin and fucoidan | ◆Enterobacteria, bifidobacteria and lactobacilli<br>in the cecum and/ or colon            |
|                         |                |                                               | ♦ SI E. coli                                                                              |
| Dierick et al. (2010)   | Weanling Pigs  | A. nodosum meal                               | ↑SI Lactobacillus/E. coli ratio                                                           |
| Lynch et al. (2009)     | Finishing pigs | Laminarin & Fucoidan extract                  | <ul><li>◆Enterobacteria</li><li>↑Lactobacillus in the proximal and distal colon</li></ul> |
| Janczyk et al. (2010)   | Weanling pigs  | Alginate                                      | ↑ SI, Caecum & Colon enterococci counts                                                   |
|                         |                | Laminarin alone or                            | <b>↓</b> Fecal E. coli counts                                                             |
| McDonnell et al. (2010) | Weanling pigs  | Laminarin+ fucoidan                           | ↑ fecal lactobacilli (fucoidan alone)                                                     |
|                         |                |                                               | ↓ fecal E. coli counts                                                                    |
| O'Doherty et al. (2010) | Weanling pigs  | Laminarin+ fucoidan                           | ↑ lactobacilli numbers                                                                    |



# SEAWEED AS PREBIOTICS - EFFECT ON IMMUNE STATUS

| Reference           | Test animals                        | Polysaccharides Tested               | Findings – Microbial                                  |
|---------------------|-------------------------------------|--------------------------------------|-------------------------------------------------------|
|                     | post-farrow                         | Crude extract of Laminarin+ fucoidan | <sup>↑</sup> E. coli phagocytizing leukocytes         |
| Leonard et al 2010b | Sows & piglets (7-14 d) post-farrow | Crude extract of Laminarin+ fucoidan | ↑ Pro-inflammatory cytokines                          |
| Smith et al 2011    |                                     |                                      | ↑ MUC2 expression  ↑ expression of IL6 & IL8 with LPS |
|                     |                                     |                                      |                                                       |







TRIAL DATA - 2 EXPERIMENTS

# SWINE - WEANED PIGLETS



## EXPERIMENT 1

#### MATERIAL AND METHODS

- Total 96 pigs (PIC L337 x C24)
- Weaning age 28 days, body weight 10 kg
- 8 replicates, 4 pigs per pen
- 3 dietary treatments:
  - Control diet
  - Control diet + AGP (Tiamulin + CTC/ Chlortetracycline)
  - Control diet + 2% OceanFeed Swine (OFS)
- Measurements; diarrhea scoring, ADG, ADFI, FCR
- Analyzed as randomized block design using MIXED procedure of SAS, pen as experimental unit.





# RESULTS —EXPERIMENT 1 — TECHNICAL PERFORMANCE

- OFS and AGP group significantly higher weight, growth, feed intake compared to control
- Performance of OFS group equal to AGP group

| Effect of dietary treatment | on Body Weig | ıht, ADG, ADF | 1 & FCR in nurs | sery pigs |
|-----------------------------|--------------|---------------|-----------------|-----------|
|                             | С            | AGP           | OFS             | p value   |
| Start weight, kg            | 10.1         | 10.1          | 10.2            | 0.81      |
| End weight, kg              | 23.2b        | 25.4a         | 25.4a           | 0.004     |
| ADG, total, g/d             | 0.548b       | 0.637a        | 0.636a          | 0.03      |
| ADFI, total, g/d            | 0.952a       | 1.058b        | 1.072ab         | 0.09      |
| FCR, total                  | 1.74         | 1.66          | 1.68            | 0.32      |



# RESULTS -EXPERIMENT1 - DIARRHEA SCORE

Effect of dietary addition of AGP or OceanFeed Swine on the diarrhea score



- Group with OFS shows lowest diarrhea score, significant P < 0.01
- Diarrhea score OFS group equal to AGP group.



# EXPERIMENT 2

#### MATERIAL AND METHODS

- Total 936 pigs (genetic cross 276 Fast female x Fast Duroc sire line)
- Weaning age 21 days, body weight 6 kg
- Period of 56 days. 4 phase feeding.
- 12 replicates, 26 pigs per pen
- 3 dietary treatments:
- AGP+ZNO: Standard diet with subtherapeutic levels of AGP and high ZnO (2500 mg/kg in phase 1+2 + 2000 mg/kg phase 3)
- ZNO: Diet without AGP and with high ZnO (same as group A)
- $\bullet$  OFS: Diet without AGP, reduced levels of ZnO to 500 mg/kg + 0.75% OFS
- Measurements; diarrhea scoring, frequency diarrhea, weekly ADG, weekly ADFI, FCR
- Analyzed as randomized block design (blocked by room) using Statistix 8 software, pen as experimental
  unit.



# RESULTS —EXPERIMENT 2 — TECHNICAL PERFORMANCE

• OFS group shows significantly equal performance regarding growth and feed intake compared with AGP+ZNO group

| Growth performance of | oigs fed a positive c | ontrol diet w | ith antibiotic gr | owth promoter |
|-----------------------|-----------------------|---------------|-------------------|---------------|
| and high ZnO (AGP+Zno | O), high ZnO (ZnO)    | or OceanFe    | ed Swine (OFS     |               |
|                       | AGP+ZNO               | ZNO           | OFS               | p value       |
| Start weight, kg      | 6.12                  | 6.08          | 6.14              |               |
| End weight, kg        | 32.69                 | 31.58         | 32.32             | > 0.05        |
| ADG, total, g/d       | 538a                  | 518b          | 531a              | < 0.05        |
| ADFI, total, g/d      | 813a                  | 782b          | 807a              | < 0.05        |
| FCR, total            | 1.51                  | 1.51          | 1.52              | > 0.05        |



# RESULTS —EXPERIMENT 2 — DIARRHEA SCORE



Group with OFS shows lowest diarrhea score, although not significant P > 0.05.

O-5 point scale
O = absence of diarrhea
1 = very low diarrhea
2 = low diarrhea

3 = intermediate diarrhea

4 =severe diarrhea

5 = very severe diarrhea



# DISCUSSION & CONCLUSION

#### Experiment 1:

- OceanFeed Swine was equally effective compared to AGP (Tiamulin + CTC) -> ADFI, ADG, FCR was improved.
- Diarrhea score was lower, less diarrhea in AGP and OFS group. OFS stimulated gut health.

#### Experiment 2:

- Removal of AGP impacted performance negatively, even when high levels of ZnO were maintained
- Use of OFS, in absence of AGP and high ZnO, provided equivalent growth performance, compared to AGP + ZnO.



# TRIAL DATA - 2 EXPERIMENTS

# POULTRY - BROILERS



# EXPERIMENT 1 - UNIVERSITY OF GUELPH

#### MATERIAL AND METHODS

- 864 d old (male) Ross x Ross 708 broiler chicks used to test response to OF Poultry
- Corn-soy-based diets were formulated for a 3-phase feeding program: Starter; d 0-10, Grower: d 11-24, and Finisher; d 25-42. Starter feed as crumble. Grower/finisher as pellet.
- OF\_Poultry added to the Control diet at 0% (control), 0.5%
- Control diet was free of AGPs, other prebiotics and probiotic additives
- Each treatment was fed to 12 replicate pens of 18 birds
- Feed Intake and Body Weight were measured at 0, 10, 24 and 42 days of age.
- Mortality adjusted FCR was calculated using the following equation: FCR Adjusted for mortality (AFCR = weight of feed consumed)/(weight gain of survivors + weight gain of mortalities).



# RESULTS — TECHNICAL PERFORMANCE

ADFI, BWG and FCR of broiler chickens fed a control diet or the control diet supplemented with 0.5% OceanFeed Poultry.



Result:
Improvement
technical
performance,
BVG showed
significant
improvement in
OF group

P < 0.05



# RESULTS - TECHNICAL PERFORMANCE

Final body weight (kg) of broiler chickens fed a control (CON) diet or the control diet supplemented with 0.5% OceanFeed Poultry.



Breast Meat Yield as a percent of broiler chickens fed a control (CON) diet or the control diet supplemented with 0.5% OceanFeed Poultry.



P < 0.05

Mortality rate, fraction, of broiler chickens fed a control (CON) diet or the control diet supplemented with 0.5% OceanFeed Poultry.





# EXPERIMENT 2 - ROSLIN INSTITUTE

#### MATERIAL AND METHODS

- 1120 d old (male) Ross x Ross 308 broiler chicks used to test response to OF Poultry
- Wheat-soy-based diets were formulated for a 3-phase feeding program: Starter; d 0-10, Grower: d 11-24, and Finisher; d 25-42. Diets in mash form.
- OF\_Poultry added to the Control diet at 0% (control), 0.5%
- Control diet was free of AGPs, anticoccidials, prebiotics and probiotic additives
- Each treatment was fed to 32 replicate pens of 35 birds
- Feed Intake and Body Weight were measured at 0, 10, 24 and 42 days of age.
- Mortality adjusted FCR was calculated using the following equation: FCR Adjusted for mortality (AFCR = weight of feed consumed)/(weight gain of survivors + weight gain of mortalities).



# RESULTS - TECHNICAL PERFORMANCE - FCR & BWG







# RESULTS - TECHNICAL PERFORMANCE - MORTALITY





# CONCLUSION POULTRY EXPERIMENTS

#### EXPERIMENT 1 - GUELPH

0,5% Ocean Feed Poultry improved BWG and Breast yield significantly.

#### EXPERIMENT 2 - ROSLIN

• 0,5% Ocean Feed Poultry improved BWG, FCR and mortality significantly.



# FINAL CONCLUSION

- OceanFeed Swine Seaweed blend was equally effective compared to a growth promoting antibiotic combination
  - ADFI, ADG, diarrhea score, FCR
- OceanFeed Poultry Seaweed blend improves BWG, FCR, Mortality, Breast Yield in Broilers
- OceanFeed Seaweed blends improves gut health, due to presence of polysaccharides with an prebiotic effect.
- OceanFeed Seaweed blends can be used as one of the natural feed ingredients for antibiotic free diets.



